
~.! "·~;-'~, .. µ_"~" ~. llff;~- ~~f-!.~f;_~,; r..!9 - '(J . '-"'~
/ . . '

' ·""' : l .- ; !

t

-

.rroura
'-...-

...
-,.. ~

From Model ·
Relational -OB·
DOsiUJI ,/ -~

I
03 .

I :'.ARCH 1994

0 71896 48946 0 . ..,;~5 d' .____ _ _____, --· na 1an
~'

-· ~~·

!
~

. . ' -
!
i

l

(

VOL. 7 NO. 3 MARCH 1994

Bulldlng on Today's 28 ADRIENNE TANNENBAUM

Can we take our existing models and make

Good Models them better? And will CASE help-or hurt?

The Magic of 32 CAROLYN Dow, JANET RIZNER. AND

DoUG STACEY Know DB2's access path

Materlallzatlon magic, and you'll perform tricks of your own.

From Model 48 MARK M. DAVYDOV

Transforming ER models into relational DBMS

to Database designs is a rough passage; here's a solution.

Nothing From Nothing: 54 DAVID McGoVERAN

Our final installment describes how designers

The Conclusion can handle nulls without many-valued logic . .

---o

DEPARTMENTS

EDITOR'S BUFFER

ACCF.SS PATH A reader counters Codd and Date.

DATABASE DESIGN Seeing the forest-and the trees.

ACCORDING TO DATE If only we used tables with no columns. ; .

CLIENT /SERVER FORUM Migrating the legacy: Risks and rewards.

ENTERPRISE VIEW

7
11
13
19
23
87
70

Checking the status of repository standards. . .

PRODUCT WATCH Connectivity, CASE, client /server, and more.

DATABASE PROGRAMMING & D.ESIGN (ISSN 0895-4518) is published monthly, except in October, which is ~lhly and contains the DATABASE PROGRAMMING & DESK>N Buy
er's Guide, by Miller Freeman. Inc., 600 Harrison St.. San Francisco. CA 94107, (415) 905-2200. Please dlnlct -illinQ and edltorial Inquiries to this adO'aas. For 9Ubscripllcn inquirieS. caU
(800) 289-0169 (outside U.S. (303) 447-9330). SUBSCRIPTION RATE for the U.S. is $47 for 13 Issues (basic) . Canadian/Mexican ordoro must be pt8l*d In U.S. funds with addltional
postage at $10 per year. Ganadian GST Permit #1245t3185. All other countries OU111de the U.S. must be prepaid In U.S. lundB with additional potltage al $15 per ,.ar for IU1ace mal or $40
per year for air mail. POSTMASTER: Send addfess changes to DATABASE PROGRAMMING & DESIGN, P.O. Box 53481, Bo<Ader, CO 80322-3481. For quickest llllMce, call loll-free (800)
289-0169 (in Cola<ado or outside the U.S. (303) 447-9330) . P1easa allow six-'<& for change of address to lake .nect. SECOND ClASS POSTAGE paid al San Frandlco, CA 94107 and at
additional mailing offices. DATABASE PROGRAMMING & DESIGN is a registered trademark owned by the parent company, Millar F_,, Inc. All material publi8hed In DATABASE PRO
GRAMMING & DESIGN is copyrighted • 1994 by Miller Freeman Inc. All rights res&Ned. Reproduction of material eppaartng In DATABASE PROGRAMMING & DESIGN ii fotbidden withOUI
permission. 16mm microfilm, 35mm microfilm, 10Snvn microfiche and anicle and iSSue photocopies are B'Rlilable from U"'-8ily Mlcrolima lnlernatiOnal, 300 N. Z88b Rd., Am Arbor, Ml 48106
(313) 76Hl700.

DATABASE PROGRAMMING & DESIGN
s

I I I I I I I I I I I I I I I I I
BY DAVID McGOVERAN

Database designers and users need to represent missing information:
Can it be done without resorting to many-valued logic? Yes-here's how

Nothing from Nothing
Part IV:

•
ID

IN PART III OF THIS
four-part series of ar

ticles, I reviewed and categorized
the main reasons that both data
base designers and users find them
selves wanting the support of a
many-valued logic. In this (the fi
nal) part of the series, I propose a
number of methods by which data
base designers can handle missing
information without the need for
many-valued logic.

The emphasis is on using
logical design principles to elimi
nate the need for nulls. Logical de
sign is defined here as the data
base design that is inferrable from
logical concerns alone. This design
is not affected by physical imple
mentation issues such as denorma
lization, index creation, or space
allocation (which are properly the
physical design's domain), nor is it
affected by the manner in which
data is perceived by particular us
ers (the conceptual design). It is
my position that all design should
first be logical, with the physical
design deviating from an augmen
tation of the logical design only
where no other alternative exists.
The reasons for deviating from the
logical design should be document-

ed and the impact on data integri
ty thoroughly assessed.

I will invoke several database
design principles in this article. An
important one is captured in what
I call the "Knowledge Principle."
Just as the Information Principle
requires .that all information be
captured by values in columns, the
Knowledge Principle precludes dis
information by stating: "All col
umns must contain values that
convey knowledge about the uni
verse of discourse (and may not
contain metadata)."

Both the Knowledge Princi
ple and the Information Principle
extend trivially to the system cata
log, which contains the database's
structure. Thus, we record data about
what we know, and do not attempt
to catalog what we do not know.

The following sections will
address each of the key sources of
missing information, describing
different techniques for handling
each. These logical design tech
niques will eliminate the need for
nulls and many-valued logic, but
are not intended to be implement
ed separately; they comprise a sys
tematic solution to the problem of
missing information. In overview,

MARCH 1994
54

the techniques proposed are:
D Separating metadata from

data: part of the solution to condi
tional information

D Association tables: the so
lution to conditional relationships

D Enforcing relation predi
cate uniqueness: the solution to an
apparent case of conditional prop
erties (conditional entities)

D Modeling subtypes: the so
lution to conditional properties and
conditional operations

D Abstract entities: converts
some apparently conditional rela
tionships to ordinary relationships
and handles conditional constraints

D Meaningful defaults: elimi
nates nulls as defaults, without con
fusing data and metadata.

Because these techniques lead
to a more accurate representation
of the application domain, the re-

. suiting logical data design inherent
ly contains more structure. On one
hand, this structure will reduce the
amount of application code needed
to support database access, and the
SQL statements used will be more
meaningful and easier to write.
On the other hand, SQL's weak
nesses will be manifested, some
times requiring that a larger num-

ber of SQL statements be written,
and physical design may sometimes
be less optimal. To meet these con
cerns, I propose a few enhance
ments to relational products:

D User-extensible audit trails:
declarative support for user-defined
metadata

D Multitable and computed
indexes: better support for associ
ation tables

D Set operation support: auto
matic support via set operations
for types and subtypes

D Declarative relation predi
cates: automatic recognition and
distinction of tables based on rela
tion predicates, of which type and
subtype support is a special case

D Surrogate keys: better sup
port for some conditional properties.

CONDITIONAL INFORMATION
Last month in Part III, I introduced
the term "conditional information"
as a catch-all phrase for various
types of missing information en
countered during data entry. In
addition to handling "data entry
nulls," designers may have to take
into account metadata about miss
ing information captured in legacy
or nonrelational databases. Given

SQL's implementation of undiffer
entiated nulls, this metadata is of
ten lost when the nonrelational
database is migrated to a relational
one. On one hand, data entry nulls
were found in Part III to reflect
conditional properties, constraints,
relations, and so on, depending on
the null's type. These causes are
addressed separately in subsequent
sections. On the other hand, data
entry nulls also reflect an attempt
to record information about the
data entry process.

The classifications of missing
information into "value not appli
cable," "value undefined," "value
temporarily unknown," and so on,
serve to record information about
why the data is missing; they give
information about the data (or meta
data). For example, "value tempo
rarily unknown" tells us that the
data entry operator believes a val
ue exists that is only temporarily
unavailable. Until the value is ac
tually obtained, it remains possible
that the data entry operator is in
correct in this belief; the value
may not be applicable or may not
even exist. Similar comments hold
with respect to the other meanings
of null. Let's examine why we

DATABASE PROGRAMMING & DESIGN
55

might want such information.
We might, for example, want

to know the data entry operator's
opinion about missing information
so that we can, at a later time, lo
cate the instances of "value tempo
rarily unknown." We could then
actively seek the real value to re
place these unknowns. A similar
reasoning would apply to instances
of "value not supplied" and "value
rejected." However, this activity is
distinct from the activity of model
ing the state of our knowledge
about the entities represented in a
logical design. It is the task of mod
eling our knowledge about the data
collection and entry process.

Distinguishing between data
about the application and " data
about the data" (that is, metadata)
in this way makes it easier to un
derstand how we can improve our
efforts. We can model the data and
metadata more carefully, thereby
obtaining more utility than possi
ble using nulls and many-valued ~

logic. To illustrate this point triv- ~
"' ially, note that we often keep track §

of metadata (such as exceptions !
and errors) in application process- ~
ing. Why should we not do so in ~
the database as well? And, just as ~

I I I I I I I I I I I I I I I I I

EMP

E_ID FNAME LNAME

1 MINNIE MOUSE

2 BILL CLINTON

3 DAFFY DUCK

4 HILLARY CLINTON
. -

FIGURE 1. Keeping metadata in lookup tables.

exception processing should be
separated from normal processing,
such information should be main
tained in separate "exception ta
bles" and not interspersed with
unexceptional production data.

A system catalog is an ex
ample of metadata, but generally
is not related to the specifics of
data entry. The metadata we are
concerned with is most commonly
encountered in audit trails; we can
capture the data's source, the data
entry operator, time of entry, and
so on. Extending this concept to
capture metadata about missing in
formation seems natural. To accom
plish this task, we must capture the
table identifier, the primary key of
the row involved, a code classify
ing the dat~ entry operator's be
lief, and an identifier for the attri
bute involved (but not a column
value). This metadata can be main
tained in separate lookup tables (see
Figure 1). In order to implement
this approach properly, we will al5o
have to support subtypes I will de
scribe in the 'Types and Subtypes"
section. While this solution can be
implemented manually, shouldn't
RDBMS products support audit
trails in which the information to
be captured is user-definable?

You might complain that this
solution constitutes planning for
additional information about ev
ery value in the database. In reali
ty, however, rows in which nulls
fulfill a functional purpose are the
exception when the database is de
signed along the principles out
lined in this article. Few database
administrators actually scan their
databases for nulls, attempting to
replace them with real values. Like
wise, few applications provide any
meaningful information about nulls
to data entry operators; a field con
taining a null in the database is
usually displayed as empty or
some other noninformaive value,
such as the string "Nill." No infor-

mation is conveyed as to the data
base null's type.

However, make a note that if
RDBMS products supported differ
entiated nulls as metadata (that is,
nulls affected neither DBMS logic
nor the user's view of data), some
thing much like the current phys
ical implementation of nulls could
be used to track metadata about
missing information. For users
who already have tables contain
ing nulls, I recommend creating
views that implement the database
design principles I will describe.
These views will not contain nulls
and should be used for all data
manipulation. Then, if you wanted
to obtain metadata, you could ac
cess the base tables containing
nulls (see Figure 2).

CONDffiONAL RELATIONSHIPS
Recall from Part III that condition
al relations among entities are
those in which the entities do not
always participate; that is, some in
stances of at least one of the enti
ties do not obey the relation. In
general, these relationships are char
acterized as 0/m:O/n relations, with
0/m:n, Of l:n, and so on, being spe
cial cases. A common approach to
modeling conditional relations in
volves using foreign keys. Where
the instance does not participate,

EMP

1 MINNIE MOUSE MICKEY

2 BILL CLINTON <null>

3 DAFFY DUCK <null>

A
E
s
T
A
I

the foreign key is then set to null.
This approach treats all instances
uniformly, imposing a table struc
ture that represents noninforma
tion for some rows and violates
the Knowledge Principle.

For example, the traditional
employees table EMP often contains
a foreign key M_ID to its primary
key Lil, identifying the employ
ee's manager (Figure 3). Although
we often think of every employee
as having a manager, obviously
this is not true. At least one em
ployee will not have a manager,
which is often modeled by insert
ing a null in place of a proper for
eign key value (shaded row in Fig
ure 3).

The solution is to model all
the conditional relations using as
sociation tables. An association ta
ble is one in which the entire pri
mary key consists of foreign keys
to other tables, thereby capturing
an association among two or more
entity instances. By creating an as
sociation table, EMP _MGR, consisting
of E_ID and M_ID, we can remove
the M_ID foreign key from the
original employee table (see Fig
ure 4). With this design, no row in
any table need have any nulls in
the foreign key columns. Instead,
a particular employee's lack of a
manager is modeled· correctly as
the lack of a row in the association
table.

This procedure also breaks re
ferential cycles, thereby eliminating
the various performance and de
sign problems associated with
them.' Likewise, modeling rela
tionships via an association table is
often easier for users to under
stand and control. For example, if
we wish to represent a Of 1:4 re la-

EMP_1

MINNIE MOUSE MICKEY
c
T/..,.
p EMP_2

L-~-'-~~~-'-~~--'~~~~ R 4 HILLARY CLINTON <null>
E_ID FNAME LNAME 0

J
E
c
T

T
0

FIGURE 2. Projection Piell'S on null-bearing tables.

MARCH 1994
56

2

3

4

BILL CLINTON

DAFFY DUCK

HILLARY CLINTON

EMP

E _ID FNAME

1 MINNIE

2 Bill

3 DAFFY

4 HILLARY

FIGURE 3. EMP table with nulls.

tionship, the cardinality constraint
can be placed on the association
table in a rather straightforward
manner (assuming the DBMS sup
ports multirow constraints with
aggregate functions):

(NOT EXIST (SELECT MGILID, COUNT(EMP _ID)
FROM EMP _MGR HAVING COUNT (EMP _ID)
<> 4 GROUP BY MGR_ID)

Because association tables elim
inate so many anomalies (such as
"special case" handling of referen
tial cycles, difficult integrity con
straint enforcement, and restrictions
on constraint definition) perfor
mance often improves when asso
ciation tables replace the embedded
foreign key approach. Certainly
tuning becomes easier: Since ac
cess to all tables is by primary key,
we need not be concerned about
foreign key index creation and
maintenance. The optimizer may
become more efficient and pre
dictable as well. Of course, perfor
mance losses are a potential disad
vantage that must be addressed. By
using simple surrogate keys (espe
cially integers) in place of nonsim
ple primary keys, we can keep as
sociation tables quite small, fully
indexed, and often cached. Note
also that the foreign key index in
the original EMP table can now be
dropped, improving table update
performance.

Indexing an association table
improves performance, but requires
some care. Several options exist. A
single B-tree index on the primary
key may suffice. This option re
quires that the leading index keys
be specified in queries so they are
known in most lookups. A small
number of B-tree indexes with dif-

LNAME M_ID

MOUSE 2

CLINTON 4

DUCK 2

CLINTON <nUll>
. .

the additional index access would
represent little additional overhead.
Ideally, DBMS vendors would sup
port cross-table indexes for this pur
pose. These indexes could some
times implement the association
table itself and could even be a
better implementation of foreign
keys (for example, Computer Asso
ciates' CA-DB uses this method for
managing referential integrity).

Although it is certainly pos
sible to use foreign keys for l:m re
lationships, it seems more rea
sonable to use association tables
uniformly in logical design and
treat the more traditional approach
as a performance optimization.
Such a uniform approach to repre
senting relationships could greatly
improve database understanding
and eliminate many anomalies
that are due to the standard for
eign key approach. With proper
support for association tables in
RDBMSs, any conceivable perfor
mance penalties for their use will
most likely be eliminated. In the
meantime, you may be surprised
to find that they actually improve
performance.

CONDITIONAL ENTITIES
Even if we create an association ta
ble in place of a traditional foreign
key implementation of a condition
al relationship, we may possibly
be overlooking the source of other
problems. The very existence of a
null in place of a value for a self
referential foreign key (for ex
ample, the shaded row of Figure 3)

EMP

E_ID FNAME LNAME

1 MINNIE MOUSE

makes it clear that rows represent
two distinct kinds of entities. In
deed, they have very different re
lation predicates because they
have different defining properties.
I refer to entities with multiple re
lation predicates as conditional en
tities: We might say that every
employee is conditionally also a
manager.

Therefore, in the traditional
employees table, each row poten
tially represents two rather differ
ent kinds of employees since some
employees are managers and each
manager is probably (though not
necessarily) an employee. This fact
becomes immediately apparent if
we recognize that managers have
defining properties not shared
with nonmanager employees. The
columns representing such attri
butes are often assigned nulls for
rows representing nonmanager em
ployees. Nonmanagerial employees
are not the same kind of entity as
managers. (As if we didn't already
know that!)

Instead of trying to capture
the employee and manager enti
ties in a single table, they should
be modeled with two distinct ta
bles: an employees table, EMP, with
primary key E_ID; and a managers
table, MGR, with primary key M_ID.
Anything else violates an impor
tant design principle: Each table
should have a single relation predi
cate specifying the represented en
tity's defining properties.2 An as
sociation table representing the
relationship between them can then
be established, having a primary
key composed of two foreign keys,
E_ID and M_ID.

CONDITIONAL PROPERTIES
Whenever a value in a non-key
base table column is optional (that
is, the database designer permits it
to be null), the column represents
a conditional property or meaning
criterion. Such columns indicate

EMP_MGR

E_ID M_ID
1

ferent index key orders may be ap- +
propriate otherwise. If the DBMS
vendor supports index-only join
strategies, separate indexes on
each of the foreign keys will per

2 Bill CLINTON

2

2 4

3 DAFFY DUCK

4 HILLARY CLINTON

mit either key to be unknown, and FIGURE 4. EMP _MGR association table.

MARCH 1994 .
58

3 2

I I I I I I I I I I I I I I I I

VEHICLES

VIN MAKE MODEL COLOR

FORD ESCORT GREEN

2 PONTIAC GRAND RED

3 PRIX <null>

CARRERA

FIGURE 5. Vehicles multitable.

FIGURE 6. Differentiating tables by relation predicates.

that multiple entity types are be
ing represented in a single table.
Each of these entities should be
given a separate table-they have
distinct relation- predicates.

For example, if a table de
scribing vehicles contains a col
umn describing the color of paint
on the vehicle, this column will be
null for vehicles that have not been
painted (Figure 5). In the case of
painted vehicles, the relation
predicate is similar to "vehicles
identified by vehicle identification
number (VIN) have paint color CO
LOR(VlN) and other properties P(VIN)."
By contrast, the rows representing
vehicles that have not been paint
ed have a relation predicate such
as "vehicles identified by VIN
have properties P(VIN)."

conditional operator may create
nulls. As with base tables, the ap
pearance of nulls in a derived ta
ble is an indication that it repre
sents multiple entities. Each of
these entities has a distinct rela
tion predicate.

For example, take the outer
join of the employees table with it
self on the M_ID foreign key (see
Figure 7). Most rows in the result
table contain information about
the employee followed by infor
mation about the employee's man
ager (probably also an employee).
These rows have a relation predi
cate similar to "the employee
identified by [_ID has properties
P(E_IO) and manager identified by
M_ID with properties P(M_IO)." By
contrast, rows for which there is
no manager have a relation predi
cate similar to "the employee
identified by [_ID has properties
P(E_IO) and such that a manager
identified by M_ID with properties
P(M_IO) for that employee does not
exist."

Conditional operations can
and perhaps should be simulated
as the union of the results of mul
tiple ordinary SEl..ECTs-one for each
unique relation predicate. Of course,

this approach can become quite
cumbersome if more than a few re
lation predicates are involved in
the desired result, which is one of
the reasons why users are asking
for outer join support in SQL. Un
fortunately, it is incorrect since the
multiple entities in the result are
presented as though they were the
same type.

The manual solution is to
query each entity type separately,
thus being deliberately cognizant
of the differences in meanings of
the rows. A more automatic solu
tion would involve true support
for set operations, as contrasted
with the restricted versions imple
mented by the relational algebra.
For example, a set union permits
arbitrary sets as operands, while
the relational union requires that
all the sets be type compatible.
When a set union is performed,
the result's type is not the same as
either operands' type (it is a super
type). Thus, the union of a "set of
apples" and a "set of oranges" is a
"set of apples and oranges," or per
haps a "set of fruit." As with con
ditional properties, this capability
would be properly addressed
through DBMS support for types
and subtypes-which I will de
scribe next.

TYPES AND SUBTYPES
Each table should have a unique
relation predicate, thereby repre
senting one and only one entity.
As noted previously, a table con
taining nulls indicates multiple re
lation predicates and, logically,
multiple tables. These tables should
be broken out by successively re
stricting the table and projecting
away the null-bearing columns.3

The various tables that can be cre
ated by this kind of projection are
each supertypes of the source ta
ble. For example (see Figure 6a),
vehicles not differentiated by
paint color (because paint color is

Following the simple design
principle that entities are differen
tiated by their relation predicates
leads to the solution depicted in
Figure 6. Of course, entities with
large numbers of meaning criteria
might cause the database design to
become quite complicated, with
the design principle leading to a
combinatorial explosion of new ta
bles. However, in my experience,
few such tables exist, and the
gains of creating additional tables
far outweigh the inconvenience.
This concern would be properly
addressed through DBMS support
for types and subtypes, which I
will describe in the "Types and
Subtypes" section.

USUAL_RESULT RESULT_TABLE_1 RESULT_
TABLE_2

CONDITIONAL OPERATORS
Even if the relational operands do
not contain nulls, the result of a

2 4 2

3 2 3

4 <nUll>

FIGURE 7. Multitable result of an outer join.

MARCH 1994
60

+~ 2 CLINTON

4 CLINTON

2 CLINTON

not a relevant property) are more
general than painted vehicles (Fig
ure 6b). Note that, unlike ordinary
projection, projecting away a null
bearing column does not append
an EXISTS to the relation predicate: It
is meaningless to refer to "VIN
where some color CQOR(VIN) exists in
the domain of colors" if color is
not a relevant property for this
vehicle.

Ideally, DBMS vendors would
support supertypes, types, and
subtypes directly. It should not be
necessary to create supertypes ex
plicitly by user-written projection
operations: The lack of a value for
a property should automatically
imply an appropriate modification
of the relation predicate. If the
DBMS kept track of these super
types automatically, it could pre
sent multiple relations to the user
with appropriate identification of
the relation predicate on demand.
Furthermore, conditional opera
tors would then be understood as
operations on multiple relation
ships (masquerading as single re
lationships) and having a multiple
entity result (again masquerading
as a single entity).

The possibility of multiple
entity results suggests extensions
to the relational model to support
more general versions of the rela
tional set operators. In particular,
relational union is a restricted ver
sion of set union. I propose that
the system should automatically
create multiple tables in the out
put, grouping like rows together
by performing the "restrict and
project away nulls" operation for
users . This capability would help

1 users distinguish between the en
tity types and recognize their in
terrelationships. In effect, such set
operations would be the multi
table result versions of existing re
lational operations, which users
must simulate manually today us
ing multiple SQL statements. Wheth
er multitable operands should be
permitted deserves additional and
careful consideration. For the time
being, the operation should be re
served for output.

Whereas the relational model
. per se does not permit the union
. of two distinct types (such as ap
, pies and oranges), the outer union
, 1°es, as ~oes my proposal. The dif-

erence 1s that outer union creates

I I I I I I I I I I I I i i I I i

STOCK_SALES

STOCK_BUYS

ru.;;:11.~n•@;lllf :llfi.i "!Jiii;li,
1 J .P. MORGAN 100.00 10/12/91 5000

FIGURE 8. Satisfying the selling short conditional constraint.

a bizarre kind of combined entity
in which every apple is given or
ange properties and every orange
is given apple properties. My pro
posal creates the expected collec
tion of types in which apples and
oranges retain their identity and
the user is not encouraged to mis
identify the types of the resulting
entities. Similar remarks apply to
the extension of the other set of
operations.

Some readers might be con
cerned regarding complexity that
is due to the numbers of tables in a
result collection. However, such
complexity is at once bounded and
unlikely to be very great in the
majority of queries. In most cases,
few entities are involved in a que
ry result: Even the more complex
outer joins usually produce fewer
than four entities. Certainly the
complexity is no greater than what
already exists in processing with
nulls since, essentially, it is only
the presentation of results that
changes! Users need not be bur
dened with attempting to collect
rows having nulls in the same col
umns, and understanding the re
sult is more straightforward.

CONDITIONAL CONSTRAINTS

resent enforcement of the database's
necessary states. Conditional con
straints require special design con
siderations if the common solution
involving nulls (for example, cre
ating an entry in a STOCK_BUYS table
with nulls in place of attribute val
ues) is to be avoided.

The solution is to create sta
tus or bookkeeping tables. The
tables represent the abstract in
stances that would "balance the
books." For example, consider a
simplified version of selling short.
As noted in Part III, the require
ment that stock sales balance stock
purchases in any transaction is a
conditional constraint. In place of
a special entry in the STOCK_BUYS ta
bles, we would create a PENDING
_STOCK_BUYS table. For each in
stance of selling short, we would
insert a row in this table. The table
would contain those columns that
would constrain any future pur
chase and satisfy the conditional
constraint. It is sometimes useful
to include a general STATUS column
in the table as well. The condition
al constraint would then be re
written to examine the STOCK_ SALES,
STOCK_BUYS, and PENDING_STOCK_BUYS
tables (Figure 8).

Conditional constraints, such as ABSTRACT ENTITIES
those implied by "selling short" Some occurrences of nulls are due
(see Part III), involve an anticipat- to a perceived lack of an appropri
ed ability to comply with some ate entity. This problem arises
constraint at some time in the fu- when the database designer insists
ture. Unlike normal constraints, it on modeling only concrete entities
may be hard to specify the condi- when, in fact, the business process
tions that spell out when condi- relates to concrete and abstract en
tional constraints are to be satis- tities. In fact, the problem is most
fied. In a sense, conditional con- prevalent when some instances of
straints represent an attempt to en- an entity are concrete and some
force the database's desired states, are abstract. Suppose that every
whereas. ordinary constraints rep- employee is supposed to be as-

DATABASE PROGRAMMING & DESIGN
61

signed to a department so that the
EMP table contains a DEPT# column
(ignoring for the moment that this
might be a foreign key). However,
from time to time a new hire may
be entered into the employees ta
ble before being assigned to a de
partment. Typically, this problem
is handled by assigning a null to
DEPT#.

A bit of careful thought will
show that this problem is frequent
ly an artifact of simplistic concep
tual design. Although the employ
ee has not been explicitly assigned
to any department, some aspect of
the company is likely to perform
the function of a department for
the employee nonetheless. You
can discover this abstract in
stance's identity by analyzing the
business function of departments
and the business processes that af
fect employees.

For example, a department
may serve as the collective unit for
a group of employees. Typically,
the manager of an employee's de
partment has hiring and firing au
thority and may sign off on pay
checks. Sometimes the department
determines the physical location
where the employee is to report at
the beginning of work. The hu
man resources department might
be one entity that meets these
qualifications for the unassigned
employee, but as an abstract in
stance distinct from the concrete
instance to which the human re
sources personnel are assigned. The
trick is to assign the abstract entity
instance a unique department iden
tifier and place it in the appropri
ate domain.

SURROGATE KEYS
In Part Ill, I pointed out that some
times conditional information in
volves the primary key. When it is
possible for a data entry operator
to fail to enter a value for any pre
sumed "candidate key," no prima
ry key can be selected without vio
lating the entity integrity rule.
This problem can be solved by cre
ating an artificial identifier, called
a surrogate key, to serve as the pri
mary key.

For example, the EMP table ori
ginally contained FNAME and LNAME
columns (first name and last name),
but not [_[). It is possible that an
employee is always identified

I I I I I I I I I I I I I I I I

VVe can eliminate
the need to put
nothing in our

databases
uniquely by the combination of a
first and last name, but sometimes
the first or last name is missing. If
this case occurs, creating a system
assigned E_IO eliminates the prob
lem by converting FNAME and LNAME
to conditional properties.

MEANINGFUL DEFAULTS
As noted in Part III, Date has rec
ommended a systematic use of de
faults as being better than using
nulls.• While my article should
make it quite clear that I believe
better logical design would elimi
nate nulls, I also believe that sys
tematic use of defaults is an essen
tial part of the solution and agree
with much of Date's proposal. Al
though the details are much too
involved to expound here, Date rec
ommends (among other things), the
following:

D DBMSs should support the
declaration of user-defined defaults
for columns.

D Various built-in functions
should be defined to support de
faults, including IS_DEFAllT (return
ing TRUE if and only if its column
value operand contains the default
value defined for the column), and
DEFAllT (returning the defined de
fault value of its column name
operand).

I would add the following
caveats and embellishments to this
proposal:

D Nulls should never be used
in place of default values.

D Defaults should always be
meaningful values from the do
main. That is, they should not be
artificially created values (includ
ing such values as "N/A" or "UN·
KNOWN"). Otherwise, default values
no longer convey any knowledge
about the entities to which they
apply, which violates the Knowl
edge Principle.

D Default values should be
defined only in the system catalog
and not stored in the table itself.
This approach requires the ability
to mark a column as having the

MARCH 1994
62

default value. Then, if the system
administrator or OBA chooses to
change the default for a column,
the table need not be rewritten.

D It should be possible to
force "marked as default" columns
to take on the value specified as
the default and be unmarked (this
operation is trivial in SQL).

D During data entry, users
(including data entry operators)
should be required to distinguish
between an entry of a default val
ue and entry of a value that hap
pens to be the same as the de
clared default. For example, it
must be possible to distinguish be
tween a value of "BLUE" and a de
fault that happens to be set to
"BLUE."

D We should distinguish be
tween data entry defaults and
database defaults. Data entry de
faults are usually associated with a
particular application and quite
possibly a particular data entry op
erator or even a session. Their pur
pose is to save the data entry oper
ator time and effort by "pre
entering" a field's most probable
value. By contrast, the purpose of
database default values is to reflect
the "standard" value of an attri
bute for all possible instances. For
example, if we had a table contain
ing information about rooms, we
might want to set the database de
fault ceiling color to white, under
the hypothesis that this color was
the most likely of any ceiling's col
or. If a particular data entry opera
tor were entering information about
rooms in a particular building that
tended to have light gray ceilings,
however, the data entry default
for ceiling color would be differ
ent from the database default and
would most likely be set by the
data entry operator and maintained
in the application. In fact, it is pos
sible to have an entire hierarchy of
default values, but only the one at
the "root" of the hierarchy corre
sponds to the database default
value.

While database default val
ues can and should be utilized to
represent our "best guess" about
missing information, they should
not be used for conditional prop
erties, relationships, constraints, or
operations. In such cases, the as
sertion of a value where none
exists conveys false information

about the universe of discourse.

CONCLUSIONS
By capturing missing information
structurally and information about
information as the separate class it
is, we eliminate the need to put
nothing in our databases. Between
the various design methods and
the new presentation of condition
al operators outlined in this arti
cle, it would seem that no need
exists to place (or permit the
automatic creation of) nulls in a
database. As a result, there is no
need to support many-valued logic
in DBMSs.

These changes have a num
ber of positive influences:

0 The DBMS can rely on
classical logic, and in doing so,
meet the goals we established for a
DBMS.

0 Performance can improve
since the entire power of classical
logic can be brought to bear on the
problem of optimization, and be
cause the many anomalies due to
the existence of nulls do not have
to be treated.

0 Integrity can be enforced
more directly without having to
worry about restrictions (such as
disallowing cascade delete on a
self-referencing table).

0 The database's structure will
be easier to understand and, there
fore, queries easier to write.

0 The results of relational
operations will be more consistent
with expectations and easier to
interpret.

0 Meanings of tables (base
and derived) will not depend on
whether or not nulls could or actu
ally do exist in the database.

0 Without the need for null
support, the SQL standard could
be simplified, as could several
applications.

In this series of articles we
have (1) reviewed the motivations
for using a formal logical system
as a foundation for a DBMS; (2)
translated certain important prop
erties of logical systems into data
base terminology, thereby moti
vating the need for database folks
to understand logic; (3) examined
the use of many-valued logics as a

I formal foundation of DBMSs and
\ found them wanting; (4) reviewed

l
' the key reasons that users and

database designers seem to require

I I I I I I I I I I I I I I I I

DBMS support of a many-valued
logic; and (5) provided a set of al
ternatives that meet user require-·
ments without doing violence to
the logical properties we desire
from a DBMS. While most of these
alternatives can be implemented
through careful database design
and use, a couple require addition
al support by vendors. In particu
lar, vendors must improve support
for default values and add support
for types and subtypes, domains,
proper set operations (union, in
tersection, difference, and so on)/
and relation predicates. Ill

I would like to thank Chris Date and Hugh Dar
wen for their helpful comments and criticisms on
this series. I would also like to apologize to Billy
Preston (again) and Eric Clapton for the abuse
of their song titles.

NOTES AND REFERENCES
l. Date, C. J. "A Note on One-to-One

Relationships," in Relational Database: Writ
ings 1985-1989, Addison-Wesley, 1990.

2. A relation predicate states all the nec
essary conditions for row membership in a
table that is independent of other tables.
There is much to be said about the defini
tion and importance of relation predicates,
a problem I address elsewhere.

3. I recently became aware of a similar

treatment by Codd (7], which he refers to
as "Conceptual Normal Form." Codd uses
projection to create supertypes, eliminat
ing all but some arbitrarily determined
percentage of nulls. By contrast, I treat all
null-bearing rows as evidence of multiple
relation predicates in the table and, there
fore, an indication of bad table design.

4. Date, C. J. "The Default Values Ap
proach to Missing Information" in Rela
tional Daiabase: Writings 1989-1991, Ad
dison-Wesley, 1992.

5. The relational model will have to be
extended to handle collections of tables in
single operations, while guaranteeing that
results are the same as from some se
quence of relational operations. This is po
tentially a big job and should be tackled
cautiously.

6. Codd introduced association tables,
surrogate keys, and types/subtypes [8].

7. Codd, E. F. "A Practical Approach to
Combining Two or More Relational Data
bases," The Relational fournal, 2(3), June/
July 1990.

8. Codd, E. F. "Extending the Database
Relational Model to Capture More Mean
ing," reprinted in Readings in Database Sys
tems, M. Stonebraker, ed., Morgan Kauf
mann, 1988.

David McGoveren i1 president of Alterna
tive Technologlea (Boulder Creek, Cali
fornia),• relational detebeae consulting
firm founded in 1976. He h81 authored
numerou1 technical articles end is also
the publi1her of the "Database Product
Evaluation Report Series."

Database
BenchI11_ar k

Neal Nelson has a new database bench mark.
You can learn which DBMS is fastest by running the database benchmark on a
given machine with several different database packages.

You can find out which computer is best for you by running the database
benchmark with your preferred DBMS on several different machines.

You can see how much the tuning process helps by running the database
benchmark before and after hardware or software tuning.

You can measure how a system degrades under load by running the benchmark
at gradually increasing user load levels.

You can run the benchmark on a standalone basis or as part of a mix with other
Neal Nelson remote terminal emulation scripts that perform word processing,
spreadsheet, electronic mail, statistical, program development, and Unix tasks.

This new benchmark performs inserts, updates, deletes, updates to key fields,
sequential queries, range queries. nested queries, wild card queries, lists, 2, 4, 6
and 1 O table joins, aggregates and sorts.

The Neal Nelson database benchmark is written in the Structured Query Language
and can be run without modification for Sybase, Oracle, lnformix and other SOL
databases.

Learn the whole story about database performance by contacting:

NEAL NELSON & ASSOCIATES
330 North Wabash, Chicago, Illinois 60611 Telephone (312) 755-1000

CIRCLE 15 ON READER SERVICE CARD

DATABASE PROGRAMMING & DESIGN
63

