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BY DAVID McGOVERAN 

Database designers and users need to represent missing information: 
Can it be done without resorting to many-valued logic? Yes-here's how 

Nothing from Nothing 
Part IV: 

• 
ID 

IN PART III OF THIS 
four-part series of ar

ticles, I reviewed and categorized 
the main reasons that both data
base designers and users find them
selves wanting the support of a 
many-valued logic. In this (the fi
nal) part of the series, I propose a 
number of methods by which data
base designers can handle missing 
information without the need for 
many-valued logic. 

The emphasis is on using 
logical design principles to elimi
nate the need for nulls. Logical de
sign is defined here as the data
base design that is inferrable from 
logical concerns alone. This design 
is not affected by physical imple
mentation issues such as denorma
lization, index creation, or space 
allocation (which are properly the 
physical design's domain), nor is it 
affected by the manner in which 
data is perceived by particular us
ers (the conceptual design). It is 
my position that all design should 
first be logical, with the physical 
design deviating from an augmen
tation of the logical design only 
where no other alternative exists. 
The reasons for deviating from the 
logical design should be document-

ed and the impact on data integri
ty thoroughly assessed. 

I will invoke several database 
design principles in this article. An 
important one is captured in what 
I call the "Knowledge Principle." 
Just as the Information Principle 
requires .that all information be 
captured by values in columns, the 
Knowledge Principle precludes dis
information by stating: "All col
umns must contain values that 
convey knowledge about the uni
verse of discourse (and may not 
contain metadata)." 

Both the Knowledge Princi
ple and the Information Principle 
extend trivially to the system cata
log, which contains the database's 
structure. Thus, we record data about 
what we know, and do not attempt 
to catalog what we do not know. 

The following sections will 
address each of the key sources of 
missing information, describing 
different techniques for handling 
each. These logical design tech
niques will eliminate the need for 
nulls and many-valued logic, but 
are not intended to be implement
ed separately; they comprise a sys
tematic solution to the problem of 
missing information. In overview, 
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the techniques proposed are: 
D Separating metadata from 

data: part of the solution to condi
tional information 

D Association tables: the so
lution to conditional relationships 

D Enforcing relation predi
cate uniqueness: the solution to an 
apparent case of conditional prop
erties (conditional entities) 

D Modeling subtypes: the so
lution to conditional properties and 
conditional operations 

D Abstract entities: converts 
some apparently conditional rela
tionships to ordinary relationships 
and handles conditional constraints 

D Meaningful defaults: elimi
nates nulls as defaults, without con
fusing data and metadata. 

Because these techniques lead 
to a more accurate representation 
of the application domain, the re-

. suiting logical data design inherent
ly contains more structure. On one 
hand, this structure will reduce the 
amount of application code needed 
to support database access, and the 
SQL statements used will be more 
meaningful and easier to write. 
On the other hand, SQL's weak
nesses will be manifested, some
times requiring that a larger num-



ber of SQL statements be written, 
and physical design may sometimes 
be less optimal. To meet these con
cerns, I propose a few enhance
ments to relational products: 

D User-extensible audit trails: 
declarative support for user-defined 
metadata 

D Multitable and computed 
indexes: better support for associ
ation tables 

D Set operation support: auto
matic support via set operations 
for types and subtypes 

D Declarative relation predi
cates: automatic recognition and 
distinction of tables based on rela
tion predicates, of which type and 
subtype support is a special case 

D Surrogate keys: better sup
port for some conditional properties. 

CONDITIONAL INFORMATION 
Last month in Part III, I introduced 
the term "conditional information" 
as a catch-all phrase for various 
types of missing information en
countered during data entry. In 
addition to handling "data entry 
nulls," designers may have to take 
into account metadata about miss
ing information captured in legacy 
or nonrelational databases. Given 

SQL's implementation of undiffer
entiated nulls, this metadata is of
ten lost when the nonrelational 
database is migrated to a relational 
one. On one hand, data entry nulls 
were found in Part III to reflect 
conditional properties, constraints, 
relations, and so on, depending on 
the null's type. These causes are 
addressed separately in subsequent 
sections. On the other hand, data 
entry nulls also reflect an attempt 
to record information about the 
data entry process. 

The classifications of missing 
information into "value not appli
cable," "value undefined," "value 
temporarily unknown," and so on, 
serve to record information about 
why the data is missing; they give 
information about the data (or meta
data). For example, "value tempo
rarily unknown" tells us that the 
data entry operator believes a val
ue exists that is only temporarily 
unavailable. Until the value is ac
tually obtained, it remains possible 
that the data entry operator is in
correct in this belief; the value 
may not be applicable or may not 
even exist. Similar comments hold 
with respect to the other meanings 
of null. Let's examine why we 
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might want such information. 
We might, for example, want 

to know the data entry operator's 
opinion about missing information 
so that we can, at a later time, lo
cate the instances of "value tempo
rarily unknown." We could then 
actively seek the real value to re
place these unknowns. A similar 
reasoning would apply to instances 
of "value not supplied" and "value 
rejected." However, this activity is 
distinct from the activity of model
ing the state of our knowledge 
about the entities represented in a 
logical design. It is the task of mod
eling our knowledge about the data 
collection and entry process. 

Distinguishing between data 
about the application and " data 
about the data" (that is, metadata) 
in this way makes it easier to un
derstand how we can improve our 
efforts. We can model the data and 
metadata more carefully, thereby 
obtaining more utility than possi
ble using nulls and many-valued ~ 

logic. To illustrate this point triv- ~ 
"' ially, note that we often keep track § 

of metadata (such as exceptions ! 
and errors) in application process- ~ 
ing. Why should we not do so in ~ 
the database as well? And, just as ~ 
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EMP 

E_ID FNAME LNAME 

1 MINNIE MOUSE 

2 BILL CLINTON 

3 DAFFY DUCK 

4 HILLARY CLINTON 
. -

FIGURE 1. Keeping metadata in lookup tables. 

exception processing should be 
separated from normal processing, 
such information should be main
tained in separate "exception ta
bles" and not interspersed with 
unexceptional production data. 

A system catalog is an ex
ample of metadata, but generally 
is not related to the specifics of 
data entry. The metadata we are 
concerned with is most commonly 
encountered in audit trails; we can 
capture the data's source, the data 
entry operator, time of entry, and 
so on. Extending this concept to 
capture metadata about missing in
formation seems natural. To accom
plish this task, we must capture the 
table identifier, the primary key of 
the row involved, a code classify
ing the dat~ entry operator's be
lief, and an identifier for the attri
bute involved (but not a column 
value). This metadata can be main
tained in separate lookup tables (see 
Figure 1). In order to implement 
this approach properly, we will al5o 
have to support subtypes I will de
scribe in the 'Types and Subtypes" 
section. While this solution can be 
implemented manually, shouldn't 
RDBMS products support audit 
trails in which the information to 
be captured is user-definable? 

You might complain that this 
solution constitutes planning for 
additional information about ev
ery value in the database. In reali
ty, however, rows in which nulls 
fulfill a functional purpose are the 
exception when the database is de
signed along the principles out
lined in this article. Few database 
administrators actually scan their 
databases for nulls, attempting to 
replace them with real values. Like
wise, few applications provide any 
meaningful information about nulls 
to data entry operators; a field con
taining a null in the database is 
usually displayed as empty or 
some other noninformaive value, 
such as the string "Nill." No infor-

mation is conveyed as to the data
base null's type. 

However, make a note that if 
RDBMS products supported differ
entiated nulls as metadata (that is, 
nulls affected neither DBMS logic 
nor the user's view of data), some
thing much like the current phys
ical implementation of nulls could 
be used to track metadata about 
missing information. For users 
who already have tables contain
ing nulls, I recommend creating 
views that implement the database 
design principles I will describe. 
These views will not contain nulls 
and should be used for all data 
manipulation. Then, if you wanted 
to obtain metadata, you could ac
cess the base tables containing 
nulls (see Figure 2). 

CONDffiONAL RELATIONSHIPS 
Recall from Part III that condition
al relations among entities are 
those in which the entities do not 
always participate; that is, some in
stances of at least one of the enti
ties do not obey the relation. In 
general, these relationships are char
acterized as 0/m:O/n relations, with 
0/m:n, Of l:n, and so on, being spe
cial cases. A common approach to 
modeling conditional relations in
volves using foreign keys. Where 
the instance does not participate, 

EMP 

1 MINNIE MOUSE MICKEY 

2 BILL CLINTON <null> 

3 DAFFY DUCK <null> 

A 
E 
s 
T 
A 
I 

the foreign key is then set to null. 
This approach treats all instances 
uniformly, imposing a table struc
ture that represents noninforma
tion for some rows and violates 
the Knowledge Principle. 

For example, the traditional 
employees table EMP often contains 
a foreign key M_ID to its primary 
key Lil, identifying the employ
ee's manager (Figure 3). Although 
we often think of every employee 
as having a manager, obviously 
this is not true. At least one em
ployee will not have a manager, 
which is often modeled by insert
ing a null in place of a proper for
eign key value (shaded row in Fig
ure 3). 

The solution is to model all 
the conditional relations using as
sociation tables. An association ta
ble is one in which the entire pri
mary key consists of foreign keys 
to other tables, thereby capturing 
an association among two or more 
entity instances. By creating an as
sociation table, EMP _MGR, consisting 
of E_ID and M_ID, we can remove 
the M_ID foreign key from the 
original employee table (see Fig
ure 4). With this design, no row in 
any table need have any nulls in 
the foreign key columns. Instead, 
a particular employee's lack of a 
manager is modeled· correctly as 
the lack of a row in the association 
table. 

This procedure also breaks re
ferential cycles, thereby eliminating 
the various performance and de
sign problems associated with 
them.' Likewise, modeling rela
tionships via an association table is 
often easier for users to under
stand and control. For example, if 
we wish to represent a Of 1:4 re la-

EMP_1 

MINNIE MOUSE MICKEY 
c 
T/..,. 
p EMP_2 

L-~-'-~~~-'-~~--'~~~~ R 4 HILLARY CLINTON <null> 
E_ID FNAME LNAME 0 

J 
E 
c 
T 

T 
0 

FIGURE 2. Projection Piell'S on null-bearing tables. 

MARCH 1994 
56 

2 

3 

4 

BILL CLINTON 

DAFFY DUCK 

HILLARY CLINTON 



EMP 

E _ID FNAME 

1 MINNIE 

2 Bill 

3 DAFFY 

4 HILLARY 

FIGURE 3. EMP table with nulls. 

tionship, the cardinality constraint 
can be placed on the association 
table in a rather straightforward 
manner (assuming the DBMS sup
ports multirow constraints with 
aggregate functions): 

(NOT EXIST (SELECT MGILID, COUNT(EMP _ID) 
FROM EMP _MGR HAVING COUNT (EMP _ID) 
<> 4 GROUP BY MGR_ID) 

Because association tables elim
inate so many anomalies (such as 
"special case" handling of referen
tial cycles, difficult integrity con
straint enforcement, and restrictions 
on constraint definition) perfor
mance often improves when asso
ciation tables replace the embedded 
foreign key approach. Certainly 
tuning becomes easier: Since ac
cess to all tables is by primary key, 
we need not be concerned about 
foreign key index creation and 
maintenance. The optimizer may 
become more efficient and pre
dictable as well. Of course, perfor
mance losses are a potential disad
vantage that must be addressed. By 
using simple surrogate keys (espe
cially integers) in place of nonsim
ple primary keys, we can keep as
sociation tables quite small, fully 
indexed, and often cached. Note 
also that the foreign key index in 
the original EMP table can now be 
dropped, improving table update 
performance. 

Indexing an association table 
improves performance, but requires 
some care. Several options exist. A 
single B-tree index on the primary 
key may suffice. This option re
quires that the leading index keys 
be specified in queries so they are 
known in most lookups. A small 
number of B-tree indexes with dif-

LNAME M_ID 

MOUSE 2 

CLINTON 4 

DUCK 2 

CLINTON <nUll> 
. . 

the additional index access would 
represent little additional overhead. 
Ideally, DBMS vendors would sup
port cross-table indexes for this pur
pose. These indexes could some
times implement the association 
table itself and could even be a 
better implementation of foreign 
keys (for example, Computer Asso
ciates' CA-DB uses this method for 
managing referential integrity). 

Although it is certainly pos
sible to use foreign keys for l:m re
lationships, it seems more rea
sonable to use association tables 
uniformly in logical design and 
treat the more traditional approach 
as a performance optimization. 
Such a uniform approach to repre
senting relationships could greatly 
improve database understanding 
and eliminate many anomalies 
that are due to the standard for
eign key approach. With proper 
support for association tables in 
RDBMSs, any conceivable perfor
mance penalties for their use will 
most likely be eliminated. In the 
meantime, you may be surprised 
to find that they actually improve 
performance. 

CONDITIONAL ENTITIES 
Even if we create an association ta
ble in place of a traditional foreign 
key implementation of a condition
al relationship, we may possibly 
be overlooking the source of other 
problems. The very existence of a 
null in place of a value for a self
referential foreign key (for ex
ample, the shaded row of Figure 3) 

EMP 

E_ID FNAME LNAME 

1 MINNIE MOUSE 

makes it clear that rows represent 
two distinct kinds of entities. In
deed, they have very different re
lation predicates because they 
have different defining properties. 
I refer to entities with multiple re
lation predicates as conditional en
tities: We might say that every 
employee is conditionally also a 
manager. 

Therefore, in the traditional 
employees table, each row poten
tially represents two rather differ
ent kinds of employees since some 
employees are managers and each 
manager is probably (though not 
necessarily) an employee. This fact 
becomes immediately apparent if 
we recognize that managers have 
defining properties not shared 
with nonmanager employees. The 
columns representing such attri
butes are often assigned nulls for 
rows representing nonmanager em
ployees. Nonmanagerial employees 
are not the same kind of entity as 
managers. (As if we didn't already 
know that!) 

Instead of trying to capture 
the employee and manager enti
ties in a single table, they should 
be modeled with two distinct ta
bles: an employees table, EMP, with 
primary key E_ID; and a managers 
table, MGR, with primary key M_ID. 
Anything else violates an impor
tant design principle: Each table 
should have a single relation predi
cate specifying the represented en
tity's defining properties.2 An as
sociation table representing the 
relationship between them can then 
be established, having a primary 
key composed of two foreign keys, 
E_ID and M_ID. 

CONDITIONAL PROPERTIES 
Whenever a value in a non-key 
base table column is optional (that 
is, the database designer permits it 
to be null), the column represents 
a conditional property or meaning 
criterion. Such columns indicate 

EMP_MGR 

E_ID M_ID 
1 

ferent index key orders may be ap- + 
propriate otherwise. If the DBMS 
vendor supports index-only join 
strategies, separate indexes on 
each of the foreign keys will per

2 Bill CLINTON 

2 

2 4 

3 DAFFY DUCK 

4 HILLARY CLINTON 

mit either key to be unknown, and FIGURE 4. EMP _MGR association table. 
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VEHICLES 

VIN MAKE MODEL COLOR 

FORD ESCORT GREEN 

2 PONTIAC GRAND RED 

3 PRIX <null> 

CARRERA 

FIGURE 5. Vehicles multitable. 

FIGURE 6. Differentiating tables by relation predicates. 

that multiple entity types are be
ing represented in a single table. 
Each of these entities should be 
given a separate table-they have 
distinct relation- predicates. 

For example, if a table de
scribing vehicles contains a col
umn describing the color of paint 
on the vehicle, this column will be 
null for vehicles that have not been 
painted (Figure 5). In the case of 
painted vehicles, the relation 
predicate is similar to "vehicles 
identified by vehicle identification 
number (VIN) have paint color CO
LOR(VlN) and other properties P(VIN)." 
By contrast, the rows representing 
vehicles that have not been paint
ed have a relation predicate such 
as "vehicles identified by VIN 
have properties P(VIN)." 

conditional operator may create 
nulls. As with base tables, the ap
pearance of nulls in a derived ta
ble is an indication that it repre
sents multiple entities. Each of 
these entities has a distinct rela
tion predicate. 

For example, take the outer 
join of the employees table with it
self on the M_ID foreign key (see 
Figure 7). Most rows in the result 
table contain information about 
the employee followed by infor
mation about the employee's man
ager (probably also an employee). 
These rows have a relation predi
cate similar to "the employee 
identified by [_ID has properties 
P(E_IO) and manager identified by 
M_ID with properties P(M_IO)." By 
contrast, rows for which there is 
no manager have a relation predi
cate similar to "the employee 
identified by [_ID has properties 
P(E_IO) and such that a manager 
identified by M_ID with properties 
P(M_IO) for that employee does not 
exist." 

Conditional operations can 
and perhaps should be simulated 
as the union of the results of mul
tiple ordinary SEl..ECTs-one for each 
unique relation predicate. Of course, 

this approach can become quite 
cumbersome if more than a few re
lation predicates are involved in 
the desired result, which is one of 
the reasons why users are asking 
for outer join support in SQL. Un
fortunately, it is incorrect since the 
multiple entities in the result are 
presented as though they were the 
same type. 

The manual solution is to 
query each entity type separately, 
thus being deliberately cognizant 
of the differences in meanings of 
the rows. A more automatic solu
tion would involve true support 
for set operations, as contrasted 
with the restricted versions imple
mented by the relational algebra. 
For example, a set union permits 
arbitrary sets as operands, while 
the relational union requires that 
all the sets be type compatible. 
When a set union is performed, 
the result's type is not the same as 
either operands' type (it is a super
type). Thus, the union of a "set of 
apples" and a "set of oranges" is a 
"set of apples and oranges," or per
haps a "set of fruit." As with con
ditional properties, this capability 
would be properly addressed 
through DBMS support for types 
and subtypes-which I will de
scribe next. 

TYPES AND SUBTYPES 
Each table should have a unique 
relation predicate, thereby repre
senting one and only one entity. 
As noted previously, a table con
taining nulls indicates multiple re
lation predicates and, logically, 
multiple tables. These tables should 
be broken out by successively re
stricting the table and projecting 
away the null-bearing columns.3 

The various tables that can be cre
ated by this kind of projection are 
each supertypes of the source ta
ble. For example (see Figure 6a), 
vehicles not differentiated by 
paint color (because paint color is 

Following the simple design 
principle that entities are differen
tiated by their relation predicates 
leads to the solution depicted in 
Figure 6. Of course, entities with 
large numbers of meaning criteria 
might cause the database design to 
become quite complicated, with 
the design principle leading to a 
combinatorial explosion of new ta
bles. However, in my experience, 
few such tables exist, and the 
gains of creating additional tables 
far outweigh the inconvenience. 
This concern would be properly 
addressed through DBMS support 
for types and subtypes, which I 
will describe in the "Types and 
Subtypes" section. 

USUAL_RESULT RESULT_TABLE_1 RESULT_ 
TABLE_2 

CONDITIONAL OPERATORS 
Even if the relational operands do 
not contain nulls, the result of a 

2 4 2 

3 2 3 

4 <nUll> 

FIGURE 7. Multitable result of an outer join. 
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+~ 2 CLINTON 

4 CLINTON 

2 CLINTON 



not a relevant property) are more 
general than painted vehicles (Fig
ure 6b). Note that, unlike ordinary 
projection, projecting away a null
bearing column does not append 
an EXISTS to the relation predicate: It 
is meaningless to refer to "VIN 
where some color CQOR(VIN) exists in 
the domain of colors" if color is 
not a relevant property for this 
vehicle. 

Ideally, DBMS vendors would 
support supertypes, types, and 
subtypes directly. It should not be 
necessary to create supertypes ex
plicitly by user-written projection 
operations: The lack of a value for 
a property should automatically 
imply an appropriate modification 
of the relation predicate. If the 
DBMS kept track of these super
types automatically, it could pre
sent multiple relations to the user 
with appropriate identification of 
the relation predicate on demand. 
Furthermore, conditional opera
tors would then be understood as 
operations on multiple relation
ships (masquerading as single re
lationships) and having a multiple 
entity result (again masquerading 
as a single entity). 

The possibility of multiple 
entity results suggests extensions 
to the relational model to support 
more general versions of the rela
tional set operators. In particular, 
relational union is a restricted ver
sion of set union. I propose that 
the system should automatically 
create multiple tables in the out
put, grouping like rows together 
by performing the "restrict and 
project away nulls" operation for 
users . This capability would help 

1 users distinguish between the en
tity types and recognize their in
terrelationships. In effect, such set 
operations would be the multi
table result versions of existing re
lational operations, which users 
must simulate manually today us
ing multiple SQL statements. Wheth
er multitable operands should be 
permitted deserves additional and 
careful consideration. For the time 
being, the operation should be re
served for output. 

Whereas the relational model 
. per se does not permit the union 
. of two distinct types (such as ap
, pies and oranges), the outer union 
, 1°es, as ~oes my proposal. The dif-

erence 1s that outer union creates 
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STOCK_SALES 

STOCK_BUYS 

ru.;;:11.~n•@;lllf :llfi.i "!Jiii;li, 
1 J .P. MORGAN 100.00 10/12/91 5000 

FIGURE 8. Satisfying the selling short conditional constraint. 

a bizarre kind of combined entity 
in which every apple is given or
ange properties and every orange 
is given apple properties. My pro
posal creates the expected collec
tion of types in which apples and 
oranges retain their identity and 
the user is not encouraged to mis
identify the types of the resulting 
entities. Similar remarks apply to 
the extension of the other set of 
operations. 

Some readers might be con
cerned regarding complexity that 
is due to the numbers of tables in a 
result collection. However, such 
complexity is at once bounded and 
unlikely to be very great in the 
majority of queries. In most cases, 
few entities are involved in a que
ry result: Even the more complex 
outer joins usually produce fewer 
than four entities. Certainly the 
complexity is no greater than what 
already exists in processing with 
nulls since, essentially, it is only 
the presentation of results that 
changes! Users need not be bur
dened with attempting to collect 
rows having nulls in the same col
umns, and understanding the re
sult is more straightforward. 

CONDITIONAL CONSTRAINTS 

resent enforcement of the database's 
necessary states. Conditional con
straints require special design con
siderations if the common solution 
involving nulls (for example, cre
ating an entry in a STOCK_BUYS table 
with nulls in place of attribute val
ues) is to be avoided. 

The solution is to create sta
tus or bookkeeping tables. The 
tables represent the abstract in
stances that would "balance the 
books." For example, consider a 
simplified version of selling short. 
As noted in Part III, the require
ment that stock sales balance stock 
purchases in any transaction is a 
conditional constraint. In place of 
a special entry in the STOCK_BUYS ta
bles, we would create a PENDING 
_STOCK_BUYS table. For each in
stance of selling short, we would 
insert a row in this table. The table 
would contain those columns that 
would constrain any future pur
chase and satisfy the conditional 
constraint. It is sometimes useful 
to include a general STATUS column 
in the table as well. The condition
al constraint would then be re
written to examine the STOCK_ SALES, 
STOCK_BUYS, and PENDING_STOCK_BUYS 
tables (Figure 8). 

Conditional constraints, such as ABSTRACT ENTITIES 
those implied by "selling short" Some occurrences of nulls are due 
(see Part III), involve an anticipat- to a perceived lack of an appropri
ed ability to comply with some ate entity. This problem arises 
constraint at some time in the fu- when the database designer insists 
ture. Unlike normal constraints, it on modeling only concrete entities 
may be hard to specify the condi- when, in fact, the business process 
tions that spell out when condi- relates to concrete and abstract en
tional constraints are to be satis- tities. In fact, the problem is most 
fied. In a sense, conditional con- prevalent when some instances of 
straints represent an attempt to en- an entity are concrete and some 
force the database's desired states, are abstract. Suppose that every 
whereas. ordinary constraints rep- employee is supposed to be as-
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signed to a department so that the 
EMP table contains a DEPT# column 
(ignoring for the moment that this 
might be a foreign key). However, 
from time to time a new hire may 
be entered into the employees ta
ble before being assigned to a de
partment. Typically, this problem 
is handled by assigning a null to 
DEPT#. 

A bit of careful thought will 
show that this problem is frequent
ly an artifact of simplistic concep
tual design. Although the employ
ee has not been explicitly assigned 
to any department, some aspect of 
the company is likely to perform 
the function of a department for 
the employee nonetheless. You 
can discover this abstract in
stance's identity by analyzing the 
business function of departments 
and the business processes that af
fect employees. 

For example, a department 
may serve as the collective unit for 
a group of employees. Typically, 
the manager of an employee's de
partment has hiring and firing au
thority and may sign off on pay
checks. Sometimes the department 
determines the physical location 
where the employee is to report at 
the beginning of work. The hu
man resources department might 
be one entity that meets these 
qualifications for the unassigned 
employee, but as an abstract in
stance distinct from the concrete 
instance to which the human re
sources personnel are assigned. The 
trick is to assign the abstract entity 
instance a unique department iden
tifier and place it in the appropri
ate domain. 

SURROGATE KEYS 
In Part Ill, I pointed out that some
times conditional information in
volves the primary key. When it is 
possible for a data entry operator 
to fail to enter a value for any pre
sumed "candidate key," no prima
ry key can be selected without vio
lating the entity integrity rule. 
This problem can be solved by cre
ating an artificial identifier, called 
a surrogate key, to serve as the pri
mary key. 

For example, the EMP table ori
ginally contained FNAME and LNAME 
columns (first name and last name), 
but not [_[). It is possible that an 
employee is always identified 
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VVe can eliminate 
the need to put 
nothing in our 

databases 
uniquely by the combination of a 
first and last name, but sometimes 
the first or last name is missing. If 
this case occurs, creating a system
assigned E_IO eliminates the prob
lem by converting FNAME and LNAME 
to conditional properties. 

MEANINGFUL DEFAULTS 
As noted in Part III, Date has rec
ommended a systematic use of de
faults as being better than using 
nulls.• While my article should 
make it quite clear that I believe 
better logical design would elimi
nate nulls, I also believe that sys
tematic use of defaults is an essen
tial part of the solution and agree 
with much of Date's proposal. Al
though the details are much too 
involved to expound here, Date rec
ommends (among other things), the 
following: 

D DBMSs should support the 
declaration of user-defined defaults 
for columns. 

D Various built-in functions 
should be defined to support de
faults, including IS_DEFAllT (return
ing TRUE if and only if its column 
value operand contains the default 
value defined for the column), and 
DEFAllT (returning the defined de
fault value of its column name 
operand). 

I would add the following 
caveats and embellishments to this 
proposal: 

D Nulls should never be used 
in place of default values. 

D Defaults should always be 
meaningful values from the do
main. That is, they should not be 
artificially created values (includ
ing such values as "N/A" or "UN· 
KNOWN"). Otherwise, default values 
no longer convey any knowledge 
about the entities to which they 
apply, which violates the Knowl
edge Principle. 

D Default values should be 
defined only in the system catalog 
and not stored in the table itself. 
This approach requires the ability 
to mark a column as having the 
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default value. Then, if the system 
administrator or OBA chooses to 
change the default for a column, 
the table need not be rewritten. 

D It should be possible to 
force "marked as default" columns 
to take on the value specified as 
the default and be unmarked (this 
operation is trivial in SQL). 

D During data entry, users 
(including data entry operators) 
should be required to distinguish 
between an entry of a default val
ue and entry of a value that hap
pens to be the same as the de
clared default. For example, it 
must be possible to distinguish be
tween a value of "BLUE" and a de
fault that happens to be set to 
"BLUE." 

D We should distinguish be
tween data entry defaults and 
database defaults. Data entry de
faults are usually associated with a 
particular application and quite 
possibly a particular data entry op
erator or even a session. Their pur
pose is to save the data entry oper
ator time and effort by "pre
entering" a field's most probable 
value. By contrast, the purpose of 
database default values is to reflect 
the "standard" value of an attri
bute for all possible instances. For 
example, if we had a table contain
ing information about rooms, we 
might want to set the database de
fault ceiling color to white, under 
the hypothesis that this color was 
the most likely of any ceiling's col
or. If a particular data entry opera
tor were entering information about 
rooms in a particular building that 
tended to have light gray ceilings, 
however, the data entry default 
for ceiling color would be differ
ent from the database default and 
would most likely be set by the 
data entry operator and maintained 
in the application. In fact, it is pos
sible to have an entire hierarchy of 
default values, but only the one at 
the "root" of the hierarchy corre
sponds to the database default 
value. 

While database default val
ues can and should be utilized to 
represent our "best guess" about 
missing information, they should 
not be used for conditional prop
erties, relationships, constraints, or 
operations. In such cases, the as
sertion of a value where none 
exists conveys false information 



about the universe of discourse. 

CONCLUSIONS 
By capturing missing information 
structurally and information about 
information as the separate class it 
is, we eliminate the need to put 
nothing in our databases. Between 
the various design methods and 
the new presentation of condition
al operators outlined in this arti
cle, it would seem that no need 
exists to place (or permit the 
automatic creation of) nulls in a 
database. As a result, there is no 
need to support many-valued logic 
in DBMSs. 

These changes have a num
ber of positive influences: 

0 The DBMS can rely on 
classical logic, and in doing so, 
meet the goals we established for a 
DBMS. 

0 Performance can improve 
since the entire power of classical 
logic can be brought to bear on the 
problem of optimization, and be
cause the many anomalies due to 
the existence of nulls do not have 
to be treated. 

0 Integrity can be enforced 
more directly without having to 
worry about restrictions (such as 
disallowing cascade delete on a 
self-referencing table). 

0 The database's structure will 
be easier to understand and, there
fore, queries easier to write. 

0 The results of relational 
operations will be more consistent 
with expectations and easier to 
interpret. 

0 Meanings of tables (base 
and derived) will not depend on 
whether or not nulls could or actu
ally do exist in the database. 

0 Without the need for null 
support, the SQL standard could 
be simplified, as could several 
applications. 

In this series of articles we 
have (1) reviewed the motivations 
for using a formal logical system 
as a foundation for a DBMS; (2) 
translated certain important prop
erties of logical systems into data
base terminology, thereby moti
vating the need for database folks 
to understand logic; (3) examined 
the use of many-valued logics as a 

I formal foundation of DBMSs and 
\ found them wanting; (4) reviewed 

l
' the key reasons that users and 

database designers seem to require 
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DBMS support of a many-valued 
logic; and (5) provided a set of al
ternatives that meet user require-· 
ments without doing violence to 
the logical properties we desire 
from a DBMS. While most of these 
alternatives can be implemented 
through careful database design 
and use, a couple require addition
al support by vendors. In particu
lar, vendors must improve support 
for default values and add support 
for types and subtypes, domains, 
proper set operations (union, in
tersection, difference, and so on)/ 
and relation predicates. Ill 

I would like to thank Chris Date and Hugh Dar
wen for their helpful comments and criticisms on 
this series. I would also like to apologize to Billy 
Preston (again) and Eric Clapton for the abuse 
of their song titles. 
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Neal Nelson has a new database bench mark. 
You can learn which DBMS is fastest by running the database benchmark on a 
given machine with several different database packages. 

You can find out which computer is best for you by running the database 
benchmark with your preferred DBMS on several different machines. 

You can see how much the tuning process helps by running the database 
benchmark before and after hardware or software tuning. 

You can measure how a system degrades under load by running the benchmark 
at gradually increasing user load levels. 

You can run the benchmark on a standalone basis or as part of a mix with other 
Neal Nelson remote terminal emulation scripts that perform word processing, 
spreadsheet, electronic mail, statistical, program development, and Unix tasks. 

This new benchmark performs inserts, updates, deletes, updates to key fields, 
sequential queries, range queries. nested queries, wild card queries, lists, 2, 4, 6 
and 1 O table joins, aggregates and sorts. 

The Neal Nelson database benchmark is written in the Structured Query Language 
and can be run without modification for Sybase, Oracle, lnformix and other SOL 
databases. 

Learn the whole story about database performance by contacting: 

NEAL NELSON & ASSOCIATES 
330 North Wabash, Chicago, Illinois 60611 Telephone (312) 755-1000 
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